Notre Dame University

Mat 339 Numerical Analysis Final Exam

Tuesday, January 31st, 2012

Duration: 2 hours

Name: _____

ID#: _____

There are 9 problems and 10 pages. Answer them all. 1)(15%) Newton's method $p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$, $n = 0, 1, 2, \dots$ for solving the equation f(x) = 0 is known to converge quadratically for simple roots of *f*. In this problem, we study the rate of convergence for multiple roots of *f*. Let *p* be a multiple root of f(x) = 0 with multiplicity $m \ge 2$.

a) Prove that Newton's method converges linearly.

b) Prove that *p* is a simple root of the function $g(x) = \frac{f(x)}{f'(x)}$.

c) Express in terms of f Newton's iteration formula applied to g.

2)(10%) a) Find the polynomial of least degree that assumes these values:

b) Deduce the polynomial of least degree that assumes these values:

x	-2	-1	0	1	2	3
У	2	14	4	2	2	10

3)(10 %) The following table for f(x) is given:

x1.01.11.21.31.4
$$f(x)$$
1.5431.6681.8101.9702.150

Use all data values to find an approximate value of c for which f(c) = 1.75

4)(10%) Derive an $O(h^4)$ five-point formula to approximate f'(x) that uses f(x-h), f(x), f(x+h), f(x+2h), and f(x+3h). [*Hint:* Consider the expression Af(x-h)+Bf(x+h)+Cf(x+2h)+Df(x+3h). Expand in fourth Taylor polynomials, and choose *A*, *B*, *C*, and *D* appropriately.]

5)(10%) Suppose that N(h) is an approximation to M for every h > 0 and that

$$M = N(h) + K_1 h^2 + K_2 h^4 + K_3 h^6 + \cdots$$

for some constants K_1 , K_2 , K_3 ,... Use the values N(h), $N(\frac{h}{3})$, and $N(\frac{h}{9})$ to produce an $O(h^6)$ approximation to M.

6)(15%) How many subintervals are needed to approximate $J = \int_0^1 \frac{\sin x}{x} dx$ with error not to exceed $\frac{1}{2} \times 10^{-5}$ using the composite trapezoidal rule?

<u>Hint:</u> $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots -\infty < x < \infty$

7)(10%)a)Derive a numerical quadrature formula of the form

$$\int_{-2}^{2} |x| f(x) dx \approx Af(-1) + Bf(0) + Cf(1)$$

that is exact for all polynomials of degree ≤ 2 .

b) Is the formula you obtained in (a) exact for polynomials of degree greater than 2? Explain.

8)(10%)Derive the midpoint formula $y_{n+2} = y_n + 2hf_{n+1}$ that is used to approximate the solution of the IVP y' = f(x, y), $y(x_0) = y_0$. Apply the formula to the IVP $(x^2 + 1)\frac{dy}{dx} + xy = 0$, y(0) = 1, on [0, 0.4], and compare it with the exact solution $y(x) = \frac{1}{\sqrt{x^2 + 1}}$ for x = 0.2, 0.3. Use h = 0.1 and $y_1 = y(0.1)$.

9)(10%) The ideal gas law is known to be pv^γ = c where γ and c are to be determined. An experiment was performed to determine γ and c. Using the least squares method, determine γ and c that fit the following data:

$\upsilon(cm^3)$	50	60	70	80	90
$p(kg/cm^3)$	63.9	52.0	39.9	22.8	16.7