Notre Dame University

Mat 339
Numerical Analysis Final Exam

Tuesday, January 31 ${ }^{\text {st }}$, 2012

Duration: 2 hours

Name:

ID\#:

There are 9 problems and 10 pages. Answer them all.
1)(15\%) Newton's method $p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}, n=0,1,2, \ldots .$. .for solving the equation $f(x)=0$ is known to converge quadratically for simple roots of f. In this problem, we study the rate of convergence for multiple roots of f. Let p be a multiple root of $f(x)=0$ with multiplicity $m \geq 2$.
a) Prove that Newton's method converges linearly.
b) Prove that p is a simple root of the function $g(x)=\frac{f(x)}{f^{\prime}(x)}$.
c) Express in terms of f Newton's iteration formula applied to g.
$\mathbf{2)} \mathbf{(1 0 \%)}$ a) Find the polynomial of least degree that assumes these values:

x	-2	-1	0	1	2
y	2	14	4	2	2

b) Deduce the polynomial of least degree that assumes these values:

x	-2	-1	0	1	2	3
y	2	14	4	2	2	10

3)(10 \%) The following table for $f(x)$ is given:

x	1.0	1.1	1.2	1.3	1.4
$f(x)$	1.543	1.668	1.810	1.970	2.150

Use all data values to find an approximate value of c for which $f(c)=1.75$
4)($\mathbf{1 0 \%}$) Derive an $O\left(h^{4}\right)$ five-point formula to approximate $f^{\prime}(x)$ that uses $f(x-h)$, $f(x), f(x+h), f(x+2 h)$, and $f(x+3 h)$. [Hint: Consider the expression $A f(x-h)+B f(x+h)+C f(x+2 h)+D f(x+3 h)$. Expand in fourth Taylor polynomials, and choose A, B, C, and D appropriately.]
$\mathbf{5) (1 0 \%)}$ Suppose that $N(h)$ is an approximation to M for every $h>0$ and that

$$
M=N(h)+K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+\cdots
$$

for some constants $K_{1}, K_{2}, K_{3}, \ldots$ Use the values $N(h), N\left(\frac{h}{3}\right)$, and $N\left(\frac{h}{9}\right)$ to produce an $O\left(h^{6}\right)$ approximation to M.
6)($\mathbf{1 5 \%}$) How many subintervals are needed to approximate $J=\int_{0}^{1} \frac{\sin x}{x} d x$ with error not to exceed $\frac{1}{2} \times 10^{-5}$ using the composite trapezoidal rule?
Hint: $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \quad-\infty<x<\infty$
7)(10\%)a)Derive a numerical quadrature formula of the form

$$
\int_{-2}^{2}|x| f(x) d x \approx A f(-1)+B f(0)+C f(1)
$$

that is exact for all polynomials of degree ≤ 2.
b) Is the formula you obtained in (a) exact for polynomials of degree greater than 2? Explain.
$\mathbf{8) (1 0 \%)}$)Derive the midpoint formula $y_{n+2}=y_{n}+2 h f_{n+1}$ that is used to approximate the solution of the IVP $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$. Apply the formula to the IVP $\left(x^{2}+1\right) \frac{d y}{d x}+x y=0, y(0)=1$, on $[0,0.4]$, and compare it with the exact solution $y(x)=\frac{1}{\sqrt{x^{2}+1}}$ for $x=0.2,0.3$. Use $h=0.1$ and $y_{1}=y(0.1)$.
9)($\mathbf{1 0 \%}$) The ideal gas law is known to be $p v^{\gamma}=c$ where γ and c are to be determined. An experiment was performed to determine γ and c. Using the least squares method, determine γ and c that fit the following data:

$v\left(\mathrm{~cm}^{3}\right)$	50	60	70	80	90
$p\left(\mathrm{~kg} / \mathrm{cm}^{3}\right)$	63.9	52.0	39.9	22.8	16.7

